jueves, 24 de noviembre de 2011

Mutaciones por inserciones de ADN por retrovirus y transposones

tomado de: http://academia.cch.unam.mx/wiki/biologia3y4/index.php/Fuentes_de_variaci%C3%B3n_gen%C3%A9tica

____Haz clic en la imagen para ver la animación.
__________________________________________
Instrucciones:
Checa esta información y las animaciones. Realiza tu resumen y trae tus dudas. Hay excelente material para comprender estos eventos.
Escribe en tu cuaderno los pasos que tiene el virus del HIV y como actuan algunos fármacos para detener su duplicación. (páginas de cellalive)
___________________________________________________________________________
Mutaciones por inserciones de ADN por retrovirus y transposones.

Además de las secuencias de ADN que fielmente ocupan sitios particulares en los cromosomas nucleares y en los genomas de mitocondria y cloroplastos, las células llevan numerosas secuencias de ácidos nucleicos que permanecen allí por su cuenta; esto es, su dinámica no depende estrictamente de la replicación del ADN nuclear durante el ciclo celular. Con frecuencia, las bacterias y algunos eucariontes llevan en su citoplasma moléculas circulares de ADN auto replicante conocidas como plásmidos.
Algunos plásmidos pueden afectar el fenotipo de la célula confiriéndole ciertas características, como puede ser la resistencia a antibióticos. Ciertas partículas semejantes a los plásmidos, llamadas epistomas, tienen la capacidad de integrarse al cromosoma bacteriano. En este aspecto se parecen a los virus (figura 2.3.2), ya que algunos virus del ADN se integran al genoma del huésped, donde pueden replicarse con él durante el ciclo celular o emplear la maquinaria bioquímica del huésped para hacer “gratis” copias de sí mismos y de su vaina proteica (como se sabe, los virus se constituyen de un ácido nucleico encerrado dentro de una especie de cápsula de origen proteico llamada vaina proteica). Según el ácido que contengan, se llaman virus de ADN o de ARN. Las partículas maduras de virus son liberadas de la célula (frecuentemente destruyendo la célula durante el proceso), e infectan otras células u organismos. En algunas ocasiones, estos virus llamados fagos, se llevan parte del genoma del huésped con ellos. Así, los virus al infectar a otro individuo pueden transferir material genético entre distintos individuos e incluso entre especies.

Ciclo litico y lisogénico del bacteriofago T4
En el pasado se pensaba que el flujo de información procedía solo del ADN al ARN y luego a la formación de proteínas, pero a finales de la década de los años 70 se descubrió el fenómeno de Transcripción Reversa. Esto se debió al estudio de ciertos virus que fueron bautizados como retrovirus. Estas partículas virales tienen como material genético una sola hebra de ARN que incluye un gen que codifica para la enzima transcriptasa reversa. Esta enzima emplea la secuencia de ARN como templado o molde sobre el cuál forma una cadena complementaria, pero de ADN. Luego ésta molécula híbrida de doble banda ARN-ADN es capaz de replicarse por medio de la ADN polimerasa para producir moléculas de doble banda de ADN (ADNc) que se integra en el genoma del huésped, aparentemente en sitios aleatorios, donde es transcrita para generar más virus de ARN. A veces, la transcripción se extiende hacia genes del huésped.

Ciclo del VIH: [Sí, esta en inglés, pero las animaciones son sencillas. Observalas con cuidado)

0 http://www.cellsalive.com/hiv0.htm
1 http://www.cellsalive.com/hiv1.htm
2 http://www.cellsalive.com/hiv2.htm
3 http://www.cellsalive.com/hiv3.htm
4 http://www.cellsalive.com/hiv4.htm
5 http://www.cellsalive.com/hiv5.htm


__  ___




Figura 2.3.2 Del lado izquierdo se muestra el esquema del bacteriófago T4 con sus tres partes principales; tanto la cabeza como la cola están constituidos de proteínas. A la derecha, se puede observar una micrografía electrónica del mismo virus, mostrando tres partículas virales.

Por lo menos ocasionalmente, la transcriptasa reversa también retro - transcribe otras secuencias de ARNm. Se sabe que algunos virus de ADN como el de la hepatitis B también pueden retro - transcribirse de ARN a ADN. Algunos pseudogenes procesados (miembros no funcionales de una familia de genes), como el pseudogen globina psi alfa 3 de los ratones, parece haberse originado por transcripción reversa de ARNm a ADNc. Se han descrito numerosos pseudogenes procesados y parece que cerca del 20% del genoma de los mamíferos consiste de secuencias retro - transcritas. Esta fracción incluye la familia Alu# de ADN altamente repetitivo, que consiste de cerca de 1 millón de copias de segmentos de 300 pares de bases que varían ligeramente en su secuencia.
Por su parte, los elementos transferibles, transposones o genes saltarines, son cadenas de ADN que cambian de lugar en un mismo cromosoma o entre cromosomas homólogos y fueron descubiertos en la década de los años 40 por Bárbara Maclintock, pero su verdadera importancia fue reconocida recientemente.
La discusión de este fenómeno en el tema de mutaciones viene a cuento, ya que el movimiento de unidades genéticas de un lugar a otro del genoma, frecuentemente altera ciertas funciones genéticas y genera variación fenotípica.
En el caso de las Secuencias de Inserción, estos segmentos de ADN son relativamente cortas, no excediendo las 2 Kilobases (una Kilobase o Kb, corresponde a 1000 pares de bases).
El análisis de la secuencia del ADN de la mayoría de las secuencias de inserción (IS, por sus siglas en inglés), ha revelado aspectos de interés; por ejemplo, en cada extremo de una unidad de cadena doble de ADN, las secuencias de nucleótidos son una repetición invertida perfecta. (figura 2.3.3). Parece ser que estas secuencias terminales son parte integral del mecanismo de inserción de estas unidades en el ADN. Asimismo, la inserción de éstas unidades parece ocurrir en ciertas regiones del ADN hospedero, lo que sugiere que las zonas terminales pueden reconocer ciertas secuencias blanco u objetivo durante el proceso de inserción.
En la década de los años 70, se descubrió que este efecto mutagénico es heredable y no es causado por el cambio de un par de bases nitrogenadas, sino que segmentos específicos de ADN se insertan en el cromosoma y que cuando espontáneamente, el segmento se escinde (se rompe y separa) del cromosoma, la mutación cesa.

Figura 2.3.3 Las Secuencias de Inserción (IS), presentan en los extremos un número variable de nucleótidos con una repetición invertida perfecta.

Algunos elementos transferibles en eucariontes como levaduras o mosca de la fruta (Drosophila melanogaster), parecen transmitirse mediante la transcripción reversa de su ARN; su estructura se parece a la de los retrovirus.
Por ejemplo, los genes saltarines parecen estar involucrados en muchas de las mutaciones morfológicas de Drosophila, tales como el locus “blanco” que afecta el color de los ojos. Asimismo, los transposones pueden ejercer su efecto mutagénico "encendiendo" o "apagando" regiones estructurales o reguladoras de los genes a los que se integran. Más aún, la presencia de varias copias de transposones en un cromosoma puede inducir delecciones e inversiones durante el entrecruzamiento.

Transposones animación


Recombinación genética
El término recombinación se refiere a la mezcla, en la descendencia, de los genes y cromosomas de los padres; lo cuál implica la formación de nuevos genotipos a partir de los ya existentes. El concepto se refiere a tres situaciones que mencionaremos en la secuencia en que ocurren para iniciar el ciclo vital:
Entrecruzamiento. Como se sabe, durante la Profase I de la meiosis, los cromosomas realizan un complicado proceso que culmina con el intercambio de material genético de un cromosoma homólogo a otro. En este proceso, cuando los cromosomas homólogos forman pareja, las cuatro cromátidas se encuentran lado con lado. Su posición es tal, que los alelos de un cromosoma se encuentran cerca de los alelos para la misma característica en el otro cromosoma. Cuando el par de cromátidas homólogas se separan en la primera división meiótica, éstos pueden tener una combinación de genes ligeramente diferente como resultado del intercambio (figura 2.3.4 Puesto que en las especies de fecundación cruzada un miembro de cada par de cromosomas es de herencia materna y el otro es de herencia paterna, el resultado es que los cromosomas de herencia materna ahora poseen fragmentos de ADN de herencia paterna; y los cromosomas de herencia paterna ahora contienen fragmentos de material genético proveniente del cromosoma donado por la madre.
El entrecruzamiento tiene valor de sobrevivencia en la población. Algunos de los gametos podrán tener una combinación de genes en la que predomine la información de uno de los progenitores, pero la mayoría tienen información muy mezclada por el resultado del entrecruzamiento. Estos gametos reciben el nombre de gametos de recombinación. La unión de gametos de recombinación con otros da por resultado una variedad de combinación de caracteres más amplia que ayuda a la supervivencia de las poblaciones por períodos más largos en un medio ambiente cambiante.
Figura 2.3.4 Entrecruzamiento sencillo entre un par de cromosomas homólogos. El cromosoma blanco es de herencia materna y el oscuro es de herencia paterna. En a) los cromosomas homólogos inician el entrecruzamiento durante la profase I de la meiosis. En b) el entrecruzamiento y la primera división meiótica ha terminado; se entiende que cada cromosoma homólogo se encuentra en células hijas distintas y, como puede verse una cromátida de cada cromosoma ya no es “pura”, pues contiene información proveniente de ambos progenitores. En c) al término de la meiosis, cada cromátida (ahora cromosoma hijo) se encuentra en distinta célula; dos de los cromosomas hijos son puros, pues llevan información de uno de los progenitores, mientras que los otros dos llevan información mezclada de ambos progenitores.

Recombinación por repartición aleatoria de los cromosomas homólogos durante la reducción cromosómica. El proceso meiótico conduce en última instancia a la formación de células sexuales con la mitad del número cromosómico de la especie; es decir, son haploides (n). Si consideramos que la especie humana tiene 46 cromosomas (número diploide o 2n), las células haploides contienen 23, pero la manera como estos 23 cromosomas se reparten a partir de la célula madre, es aleatoria respetando una regla única: durante la primera división meiótica irá un miembro de cada par de cromosomas a cada célula hija (ver ejemplo en la figura 2.3.4).
Recombinación por restablecimiento del número diploide de cromosomas en el cigoto. Cuando se realiza la fecundación, se fusionan dos células: el óvulo y el espermatozoide, aportando cada uno un número haploide de cromosomas para restablecer el número diploide (figura 2.3.5). Así, el nuevo ser se forma, en el caso de la especie humana, a partir de 23 cromosomas aportados por la madre y 23 aportados por el padre.
Si sumas las tres fuentes de recombinación, notarás que cada nuevo ser formado por reproducción sexual cruzada, contendrá información genética proveniente de sus cuatro abuelos. La recombinación es un proceso importante por dos razones. La primera es que los genes diferentes (aportados por el padre y la madre) interactúan, y ciertas combinaciones constituyen individuos más aptos que otros. La segunda razón es que el número de recombinaciones es infinitamente mayor que el número de mutaciones. Aunque la fuente original de la variación es la mutación, la mayoría de genotipos nuevos en la naturaleza son por recombinación y la reproducción sexual es la manera de asegurar la recombinación.
Figura 2.3.5 Durante la recombinación por repartición aleatoria de los cromosomas homólogos, ocurre que a partir de un número diploide de cromosomas en una célula que inicia la meiosis, se obtendrán en la primera división meiótica dos células hijas haploides (con cromosomas dobles). Dado que la repartición de los cromosomas homólogos es aleatoria, el cálculo del número de posibles células distintas viene dada por la ecuación 2n, donde n es el número de pares de cromosomas existentes en la especie. En este caso hipotético, el número diploide de cromosomas es 6; es decir, tres pares, por lo que 23 = 8. Las ocho posibles combinaciones vienen representadas considerando a los cromosomas blancos como de origen materno y a los obscuros de origen paterno. En la especie humana, el número de posibles células distintas es de 223; es decir, cerca de 8 millones 400 mil.

Duplicación del ADN con las enzimas involucradas.
Recombinación

No hay comentarios:

Publicar un comentario