Páginas con informacion adicional

lunes, 25 de noviembre de 2019

Fuerzas evolutivas y sus consecuencias 2017


Chicos:

Aqui el enlace al tema de hoy.

Resumen en su cuaderno.

Fuerzas evolutivas y sus consecuencias


 Sólo la parte de Biología. La nota es adicional. 

sábado, 9 de noviembre de 2019

Elysia chlorotica, molusco fotosíntetico

Chicos la actividad del lunes es la del enlace. Nos vemos en clase


miércoles, 6 de noviembre de 2019

Fotosíntesis PP



Presentación

Chicos aquí el enlace a la presentación de PP
impriman las diapositivas y los esquemas de un buen tamaño.

domingo, 27 de octubre de 2019

Reporte sobre fermentación

Tepache



Chicos aquí el enlace a el formato para su reporte.
Grupos del lunes entregan miércoles, grupo del martes entregan el jueves.

jueves, 24 de octubre de 2019

Microorganismos y chocolate

Chicos:
Tenemos esta lectura muy interesante sobre la producción del chocolate a partir del cacao. 
Microorganismos y chocolate PDF o HTML

Nos vemos en clase con su resumen. pongan ilustraciones que les ayuden a entender el texto.

Cita:

WACHER RODARTE, María del Carmen "Los microorganismos y el cacao" Revista Digital Universitaria [en línea]. 1 de abril de 2011, Vol. 12, No.4 [Consultada: 2 de abril de 2011]. Disponible en Internet: <http://www.revista.unam.mx/vol.12/num4/art42/index.html>
ISSN: 1607-6079.


domingo, 20 de octubre de 2019

Fermentación y respiración

Chicos:

Recuerden que e material es de la guía del examen extraordinario

De la página 42 a la 52.

Además  de investigar las aplicaciones de elaboración de yogurt, queso o pan y otra de fermentación que les agrade.

También sobre el proceso de pasteurización.

Nos vemos en clase.

martes, 8 de octubre de 2019

domingo, 6 de octubre de 2019

Diversidad de los Sistemas vivos y metabolismo

Chicos aquí esta el tema para el lunes y martes. Pasen la voz.
Primero es el texto introductorio que esta en esta entrada y después el del enlace al PDF.
Impriman las figuras  en color para apoyar su resumen.
Enlace al PDF
https://www.dropbox.com/s/bctourfhhd27in9/selection.pdf?dl=0

(La pregunta 2 de la página 21 y la autoevaluación, no se realizan como parte de la tarea)
____________________________________________________________________________
Con base en tus antecedentes académicos, es posible que estés de acuerdo con nosotros si declaramos que se puede decir que un ser vivo es un sistema que intercambia materia y energía con el medio externo y que tal intercambio no es aleatorio, pues está controlado por el propio organismo (aunque con gran frecuencia el ambiente presenta, estacionalmente, limitaciones en la oferta de algunos de sus componentes. Por ejemplo: la lluvia, la temperatura, la cantidad de luz, etc.). Ciertamente, el organismo se encarga de administrar sus insumos para realizar todas sus funciones: tanto para fabricar sus componentes estructurales y funcionales, como para darse automantenimiento y realizar el manejo energético que le permita manifestarse como ente vivo.
Cualesquiera que sean los usos a que se reserven los recursos obtenidos, es importante señalar que tales insumos no pueden ser manejados en crudo; el organismo debe darles un tratamiento bioquímico para disponer de ellos, y, como ya hemos visto, a toda la serie de reacciones bioquímicas que ocurren en un organismo se les da el nombre de metabolismo.
Dependiendo del tipo de reacción de que se trate, el metabolismo se divide en Anabolismo y Catabolismo. Todas las reacciones de síntesis, que casi invariablemente son endoenergéticas (es decir, que requieren de una fuente de energía para realizarse), se clasifican como anabólicas. Por su parte, las reacciones catabólicas son reacciones que implican el rompimiento de una molécula grande en dos o más moléculas mas pequeñas, frecuentemente acompañadas de una liberación de energía (reacciones exoenergéticas).

Anabolismo (Reacciones de síntesis de moléculas complejas)
Metabolismo
Catabolismo (Reacciones de fragmentación o catalíticas)

Imagen:Metabolism.jpg
La célula presenta compuestos bioquímicos que absorben o liberan energía y que van aparejados a las reacciones antes señaladas “para” evitar un derroche energético que pudiese, además, incrementar peligrosamente la temperatura corporal. Estos intermediarios energéticos son generalmente compuestos fosforilados, siendo los más conocidos los fosfatos de adenosina: el difosfato y el trifosfato de adenosina (ADP y ATP).
De los fenómenos mejor conocidos podemos mencionar como ejemplo típico de reacción catabólica a la respiración celular, ya que durante este proceso, la glucosa se rompe en 6 moléculas de CO2 y 6 moléculas de H2O con la consiguiente producción de 36 moléculas ATP (como ganancia neta).

center

En cuanto a reacciones anabólica podemos mencionar como ejemplo típico a la fotosíntesis, ya que gracias al bióxido de carbono (constituido de tres átomos), el agua (también de tres átomos) y mediante la energía luminosa y la clorofila se genera glucosa (C6 H12O6; es decir, un compuesto de 24 átomos), liberándose como producto de desecho O2. Desde luego, se requieren 6 moléculas de bióxido de carbono y 12 de agua (en realidad, 6 de ellas son realmente incorporadas y 6 son regeneradas al final), por lo que la reacción está balanceada en cuanto al número de átomos de cada elemento, pero es claro que la molécula de glucosa es bastante más grande que cualquiera de los dos reactivos. Otros ejemplos lo son la síntesis de proteínas o de ADN.


Como ya hemos mencionado, es acertado mencionar que prácticamente cada grupo taxonómico tiene rutas metabólicas específicas; en este tema, estudiaremos diversos mecanismos de nutrición, así como algunos procesos metabólicos (anabólicos y catabólicos) que generan diversidad entre los sistemas vivos.

martes, 17 de septiembre de 2019

Enzimas, información general. 2019 y Juega con las enzimas.

ENZIMAS

TEXTO TOMADO DE: HTTP://ACADEMIA.CCH.UNAM.MX/WIKI/BIOLOGIA3Y4/INDEX.PHP/METABOLISMO

Chicos :

Aquí la información para las clases de miércoles, jueves y viernes.

Es el texto más el juego de las enzimas.
_______________________--------______________
Las enzimas son un tipo de proteínas sintetizadas por los seres vivos que catalizan (aceleran o retardan) una reacción química termodinámicamente posible.
Una característica de los seres vivos, es su capacidad para llevar a cabo reacciones químicas a gran velocidad a temperatura ambiente. Si estas mismas reacciones se realizaran fuera de la célula (in vitro) lo harían muy lentamente.
La mayoría de las reacciones químicas solamente se realizan a temperaturas elevadas y, como todos los sistemas vivos requieren de un número muy elevado de reacciones químicas para mantenerse como tales y al mismo tiempo no soportan la elevada temperatura (principalmente porque se desnaturalizan sus proteínas), la única manera de realizarlas es mediante el uso de enzimas.
Las enzimas pueden trabajar en concentraciones muy bajas, y eso representa una ventaja para los sistemas vivos, ya que normalmente no requieren de una alta concentración de ellas para catalizar sus vitales reacciones químicas. Sin embargo, su naturaleza proteica les confiere especificidad, lo que quiere decir que solamente catalizan un tipo de reacción, por lo que se necesita de miles de enzimas diferentes para poder realizar todas sus reacciones. Por su misma naturaleza proteica se ven afectadas en su actividad catalítica por la acción del pH, calor, y disolventes orgánicos que pueden desnaturalizarlas.
Clasificación. Las enzimas se pueden clasificar de diferentes maneras, pero la clasificación internacional se puede ver en el cuadro 1.1
Oxidorreductasas. Intervienen en los procesos de oxidación fisiológica. Estas enzimas emplean como aceptores de hidrógeno a los nucleótidos de piridina NAD (nicotinamida adenin dinucleótido) NADP (nicotinamida adenin dinucléotido fosfato) al FAD (flavin adenin dinucléotido) o al O2.
Transferasas. Se encargan de catalizar la transferencia de grupos químicos de un sustrato a otro. Un ejemplo de este tipo de enzimas es la transaminasa, que transfiere grupos amino de una molécula a otra.
Hidrolasas. Catalizan reacciones hidrolíticas y entre ellas se encuentran las enzimas digestivas como la amilasa, sacarasa, lipasa y proteasa.
Liasas. Son enzimas que rompen ligaduras entre carbonos, entre carbono y oxígeno y entre carbono y nitrógeno además de otros enlaces por medios diferentes a la hidrólisis y a la oxidación. En las reacciones de las liasas intervienen numerosas coenzimas.
Isomerasas. Catalizan reacciones en las que una molécula sustrato se convierte en un isómero.
Ligasas. Catalizan la unión de dos moléculas, utilizando energía del ATP.

Nomenclatura. Para darle nombre a una enzima, se utiliza el nombre del sustrato sobre el que actúa, añadiendo el sufijo asa. Por ejemplo; la amilasa que actúa sobre el almidón, las lipasas que actúan sobre los lípidos y las proteasas que actúan sobre las proteínas. En algunos casos se les han dado nombre que no siguen esta nomenclatura, pero que son generalmente empleados como en el caso de la pepsina y tripsina (enzimas digestivas), por lo cual se ha establecido una nomenclatura y clasificación sistemática por parte de la International Enzyme Comission, que se emplea más en las publicaciones científicas, o cuando se requiere de una identificación exacta. Para el uso común es más práctica la nomenclatura primeramente descrita.
Características de las enzimas. Desde el punto de vista estructural hay dos tipos de enzimas; Las que son proteínas puras y las que están compuestas por una apoenzima (la enzima propiamente dicha) de naturaleza proteica, que para su activación requiere de un cofactor. El cofactor puede ser de cualquiera de los tres tipos siguientes: a)Grupo prostético b)Coenzima c) Activadores metálicos
El grupo prostético es un cofactor que se encuentra firmemente unido a la parte proteica. La coenzima es una molécula orgánica pequeña, termoestable, y que se puede separar fácilmente de la parte proteica. El último cofactor son cationes metálicos mono o divalentes , tales como K+, Mn2+,Mg2+,Ca2+,Zn2+ que pueden estar débil o fuertemente adheridos a la enzima. Cuando se separa a la apoenzima de su cofactor, ésta permanece inactiva. La mayoría de las enzimas son de este último tipo y recibe el nombre de holoenzima cuando la apoenzima esta unida a su cofactor (figura 1.1).




Figura 1.1 La enzima y el cofactor unidos forman la holoenzima

Todas las enzimas comparten cuatro características:
1) Únicamente catalizan reacciones termodinámicamente posibles, pero lo hacen a gran velocidad.
2) Las enzimas no se ven alteradas permanentemente a consecuencia de las reacciones que catalizan, por lo cual la misma enzima puede catalizar innumerables veces la reacción.
3) La misma enzima puede trabajar en la reacción inversa.
4) Las enzimas son altamente específicas y actúan únicamente sobre un sustrato.
El sustrato son moléculas que la enzima puede reconocer químicamente, unirse a ellas y actuar para catalizar una reacción específica.

Interacciones Enzima-sustrato.
Sitio activo. Ya que las enzimas son específicas para un sustrato, se debe tener un mecanismo de reconocimiento del sustrato a catalizar. El mecanismo consiste en una porción de la molécula de la enzima llamado “sitio activo” (figura 1.2). Este sitio suele consistir en un grupo de aminoácidos específicos. Por ejemplo; El tripsinógeno (enzima del jugo pancreático) se convierte en la enzima activa “tripsina” por la acción de la enzima enteroquinasa o incluso por la propia tripsina.
Figura 1.2 Sitio activo del tripsinógeno
Figura 1.2 Sitio activo del tripsinógeno
La estructura primaria del tripsinógeno es una cadena polipeptídica que al convertirse en tripsina se separa un hexapéptido a partir del grupo amino terminal y se produce un cambio en la estructura primaria de la proteína para exponer los sitios catalíticamente activos que contienen residuos de serina y de histidina.
La forma de actuar de una enzima es cuando el sustrato se fija al sitio activo de la enzima, o sea que tiene una forma complementaria, éste se modifica cuando se une al sustrato. A este proceso dinámico se le conoce como acomodo inducido. Una vez que el sustrato está en el sitio activo, en su conjunto reciben el nombre de complejo enzima-sustrato y se lleva a cabo la función catalítica (figura 1.3).



Figura 1.3 Formación del complejo enzima-sustrato

Sin embargo, será necesaria una mínima cantidad de energía, la cual recibe el nombre de energía de activación. Lo cual quiere decir que las reacciones no se llevan a cabo libremente, sino que los componentes están en una situación químicamente estable y únicamente reaccionan cuando se les aplica una cierta cantidad de energía. Cuando una reacción química se realiza fuera de la célula se libera bruscamente energía en forma de calor, pero en las células vivas la liberación de calor se realiza poco a poco y en cantidades pequeñas que permiten el aprovechamiento de la energía al máximo.

Factores que afectan la actividad enzimática.
No todas las enzimas funcionan de la misma manera y en cualquier situación ambiental, ya que cada tipo de enzima tiene un rango de temperatura y pH en el que su desempeño es mejor, esto significa que la reacción es más rápida y por lo tanto, la formación de producto también lo es. Normalmente la velocidad de la reacción catalizada es directamente proporcional a la concentración de la enzima


Figura 1.4 Relación entre la concentración de enzima y la cantidad de sustrato transformado por unidad de tiempo

En la figura 1.4 se muestra la relación de producto (compuesto transformado) y la concentración de enzima. A mayor cantidad de enzima presente en un mismo tiempo, se obtiene una mayor cantidad de producto cuando se tiene una cantidad ilimitada de sustrato. Pero si mantenemos la concentración de enzima fija y aumentamos la concentración de sustrato, se puede obtener una curva como la siguiente (Figura 1.5).
Un aumento en la cantidad de sustrato cuando la concentración de enzima es fija, produce al principio un aumento en la velocidad de la reacción, pero a medida que la concentración de sustrato va aumentando la velocidad de la reacción va disminuyendo hasta llegar a un punto en el cual se estabiliza (velocidad máxima de reacción) y, de este punto en adelante, aunque se continúe aumentando la cantidad de sustrato, la enzima ya saturada, no puede aumentar la cantidad de producto.
Figura 1.5  Relación entre la concentración de sustrato y velocidad de reacción
Figura 1.5 Relación entre la concentración de sustrato y velocidad de reacción

En la figura 1.5 la cinética de primer orden se refiere a una aceleración en la que la conversión del sustrato A al producto B es directamente proporcional a la concentración de sustrato. La cinética de orden cero, se refiere a que la enzima esta trabajando a su máxima capacidad y que por lo tanto ya es imposible acelerar la reacción. La cinética de orden cero no significa que la enzima no está trabajando, sino que ya no puede trabajar a una velocidad mayor. La mezcla de cinética de primer orden y de orden cero se refiere a la etapa en la cual empieza a declinar la velocidad porque esta empezando a saturarse la enzima, y está disminuyendo su aceleración poco a poco hasta llegar a la saturación. Esto quiere decir, que es capaz de transformar una cierta cantidad de sustrato A al producto B por unidad de tiempo a una determinada concentración y no más.
Efecto de la temperatura. Como cualquier tipo de proteína, las enzimas se ven afectadas por la temperatura, especialmente cuando esta es alta. Las reacciones químicas normalmente se aceleran al aumentar la temperatura, ya que la alta temperatura incrementa la velocidad molecular (aumenta la velocidad de colisión entre moléculas) y las reacciones ocurren más frecuentemente. Cualquier microorganismo crecerá más rápidamente a mayor temperatura que a temperaturas más bajas, razón por la cual se utiliza el refrigerador para conservar los alimentos, no porque no puedan crecer los microorganismos en el refrigerador, sino porque crecen a mucho menor velocidad. Así también se explica porque el yogurt se produce más rápidamente a temperaturas entre 25 y 300 C y no a menores temperaturas. Sin embargo el aumento constante de la temperatura no garantiza una mayor velocidad de reacción, ya que se llegará a una temperatura en el que las enzimas en lugar de aumentar su velocidad de reacción, la disminuyen, e incluso en algún punto ésta se detiene (figura 1.6). Esto se debe a que las altas temperaturas dañan a las proteínas de las que están formadas las enzimas. El calor excesivo rompe los puentes de hidrógeno y otras fuerzas intermoleculares que dan estabilidad a la estructura tridimensional de las proteínas. Así, las enzimas cambian de forma, pierden solubilidad y se coagulan. Esto último le pasa a las proteínas del huevo cuando se cocina, ya que las proteínas de huevo se desnaturalizan perdiendo su capacidad funcional. Esto mismo puede pasar cuando tenemos fiebre alta. Un humano puede morir cuando su temperatura interna alcanza los 44 grados Centígrados.
Figura 1.6 Relación entre la temperatura y la velocidad de reacción enzimática.
Figura 1.6 Relación entre la temperatura y la velocidad de reacción enzimática.

Una vez que una enzima ha sido dañada por altas temperaturas ya no se puede volver nuevamente funcional. Esta es la razón por la que es más seguro comer alimentos cocinados que crudos, ya que al cocinarse, las altas temperaturas inactivan las enzimas de los microorganismos presentes y éstos mueren.
A diferencia de las altas temperaturas, las temperaturas bajas no producen daño permanente a las enzimas, usualmente al bajar la temperatura la actividad enzimática disminuye y hasta puede detenerse, pero al aumentar la temperatura la enzima puede volver a activarse.
Efecto del pH. La acidez o alcalinidad del medio en el que se encuentre una enzima puede afectar sus propiedades catalíticas (sabemos que el pH neutro es de 7, y que cualquier valor por debajo de 7 corresponde a un medio ácido. Así, los valores ácidos van del 0 al 7; entre más ácida es una solución su pH será más bajo. Por arriba de 7 y hasta un valor de 14 tenemos los pH alcalinos; entre más alto el valor del pH por arriba de 7, más alcalina es la solución) (figura 1.7).

Figura 1.7 Relación entre el pH y la velocidad de reacción enzimática.

Debido a que las enzimas son proteínas, éstas se pueden ver afectadas en sus grupos amino y carboxilo que son de carácter iónico, y en consecuencia, modificar sus propiedades catalíticas. Un alto nivel de acidez o alcalinidad pueden producir desnaturalización de las proteínas.
En las células existen sustancias amortiguadoras del pH que evitan que el citoplasma se acidifique o alcalinice y lo mantienen en un pH adecuado o muy cercano a él. Al igual que las bajas temperaturas el pH ácido puede ser usado para conservar alimentos (por ejemplo; en vinagre, que es ácido acético), ya que las enzimas de los microbios que descomponen los alimentos no pueden tolerar las condiciones ácidas.

Juega con las enzimas


1o.- Utiliza el navegador Internet Explorer, de tu computadora.

2o.- Accede al siguiente enlace:  simulador de la actividad enzimática juega con la cantidad de enzimas, los sustratos, el pH, los inhibidores e inclusive el tamaño del recipiente.

[Si utilizas otro navegador sólo descarga un archivo que no es posible utilizar.]


Observa cómo es que se forman los productos (esferas rojas) de acuerdo a tus cambios. Escribe 4 observaciones en tu cuaderno y sus resultados de acuerdo a los cambios que realizaste .
 Para poder jugar necesitas apretar el botón cambiar datos y luego el de Play




http://www.bionova.org.es/animbio/anim/cinetica.swf




domingo, 8 de septiembre de 2019

Metabolismo Mapa Conceptual.


Chicos recuerden que la tarea es en equipo.

A partir de estos conceptos realizar un mapa conceptual.

Puedes imprimirlo y recortar los conceptos y hacer las conexiones o enlaces a mano.

Pueden agregar figuras pero no conceptos.

martes, 3 de septiembre de 2019

Metabolismo y energía II

Chicos:

La segunda parte que esta muy sencilla y algunos videos divertidos.
_______________
El ATP es usado como donante de energía en muchas reacciones anabólicas (de síntesis) acoplándose a las mismas en manera tal que el G sea negativo y la reacción se produzca espontáneamente.

Metabolismo














sábado, 31 de agosto de 2019

Metabolismo y energía y Requiem for a dream

Chicos: 

Un poco tarde el texto, pero aquí esta. Es sencillo

Espero puedan ver la película Requiem por un sueño. Esta en Netflix
Tomado de: http://academia.cch.unam.mx/wiki/biologia3y4/index.php/Metabolismo_y_energ%C3%ADa
LECTURA
Aprendizajes
El alumno:
.conocerá a la energía en términos bioquímicos.
.conocerá al ATP como “moneda” universal de energía.
.diferenciará los procesos del catabolismo por los cuales se obtiene energía útil en forma de ATP a partir de biomoléculas.
.conocer el origen de las moléculas de ATP
.comprender las reacciones acopladas de oxidación y reducción
Energía
Es la capacidad de realizar un trabajo. A pesar que existen varias formas de energía: química, luminosa, mecánica, etc. , solo hay dos tipos básicos:
1.Potencial: es la capacidad de realizar trabajo como resultado de su estado o posición. Puede estar en los enlace químicos, en un gradiente de concentración, en un potencial eléctrico, etc.

Figura 1 Energía Potencial



















Figura 2. Energía Cinética


Figura 2. Energía Cinética











2.Cinética: es la energía del movimiento, puede existir en forma de calor, luz, etc.

En términos bioquímicos, representa la capacidad de cambio, ya que la vida depende de que la energía pueda ser transformada de un tipo de energía a otra, cuyo estudio es la base de la termodinámica. Sus leyes son aplicables a los sistemas cerrados o aislados, es decir, aquellos que no intercambian energía con el medio que los rodea; las células son sistemas abiertos, o sea pequeñas partes de un sistema cerrado mayor. Las leyes de la termodinámica expresan:
1º Ley: en un sistema aislado la energía no se crea ni se destruye, puede ser transformada de un tipo de energía a otra.
2º Ley: no toda la energía puede ser usada y el desorden tiende a aumentar, lo que se conoce como entropía.
Metabolismo
Todas las formas de vida están basadas en prácticamente las mismas reacciones bioquímicas. Cada uno de los compuestos que se generan en este conjunto de reacciones se le denominan compuestos endógenos o metabolitos y al conjunto de todas las reacciones que suceden en una célula se le denomina metabolismo.
Todas las transformaciones de las moléculas tienen dos funciones principales: la primera, proporcionar a las células, materiales que requieran para sus distintas funciones, siendo la más importante la renovación constante de sus propias moléculas; la segunda, obtener diferentes formas de energía para mantener las funciones vitales.
Cada célula desarrolla miles de reacciones químicas que pueden ser exergónicas (con liberación de energía) o endergónicas (con consumo de energía), que en su conjunto constituyen el metabolismo celular. Si las reacciones químicas dentro de una célula están regidas por las mismas leyes  termodinámicas ... entonces cómo se desarrollan las vías metabólicas? 1. Las células asocian las reacciones: las reacciones endergónicas se llevan a cabo con la energía liberada por las reacciones exergónicas.
2.  Las células sintetizan moléculas portadoras de energía que son capaces de capturar la energía de las reacciones exergónicas y las llevan a las reacciones endergónicas.
3. Las células regulan las reacciones químicas por medio de catalizadores biológicos: ENZIMAS
ATP: reacciones acopladas y transferencia de energía
El ATP pertenece al grupo de los nucleótidos, por lo tanto está compuesto por una base nitrogenada (adenina), una pentosa (ribosa) y tres grupos fosfato, con enlaces de alta energía. ATP significa adenosina tri fosfato, o trifosfato de adenosina.
Las células acostumbran guardar la energía necesaria para sus reacciones en ciertas moléculas, la principal es el ATP, las células lo usan para capturar, transferir y almacenar energía libre necesaria para realizar el trabajo químico. Es el intermediario energético, llamado “moneda” universal.
La función del ATP es suministrar energía hidrolizándose a ADP (adenosin difosfato)y Pi (fósforo inorgánico). Esta energía puede usarse para:
obtener energía química: por ejemplo para la síntesis de macromoléculas;
transporte de materiales a través de las membranas
trabajo mecánico: por ejemplo la contracción muscular, movimiento de cilios y flagelos, movimiento de los cromosomas, etc.
Estructura del ATP.
Figura 3. Estructura del ATP


Figura 3. Estructura del ATP

Note que las cargas altamente ionizables de los grupos fosfatos hacen que se repelan unos de otros; por lo tanto resulta fácil separar uno o dos Pi (fosfatos inorgánicos, forma corta del HPO2-) del resto de la molécula.
La hidrólisis del ATP da:
ATP + H2O-------------------------------------- ADP + Pi
Figura 4. Hidrólisis del ATP

Figura 4. Hidrólisis del ATP

El cambio de Energía libre
G = -7,3 Kcal/mol muy exergónica

2. La hidrólisis del adenosín difosfato da:
ADP + H2O ------------------------------------------- AMP + Pi
G = -7,2 Kcal/mol ---------------------------------------------- muy exergónica
Para sintetizar ATP (adenosín trifosfato) a partir de ADP (adenosín difosfato) se debe suministrar por lo menos una energía superior a 7,3 Kcal. Las reacciones que típicamente suministran dicha energía son la reacciones de oxidación.
ADP + Pi + energía libre ------------------------------------- ATP + H2O
Síntesis del ATP Las células requieren energía para múltiples trabajos: Sintetizar y degradar compuestos
Transporte a través de las membranas (activo, contra el gradiente de concentración).
Endocitocis y exocitosis.
Movimientos celulares.
División celular
Transporte de señales entre el exterior e interior celular
Esta energía se encuentra en las moléculas de ATP, en las uniones químicas de alta energía de los fosfatos. Las moléculas de ATP se ensamblan en las mitocondrias a partir del ADP y los Pi con la energía tomada de la ruptura de moléculas complejas como la glucosa, que a su vez deriva de los alimentos ingeridos.
La Glucosa (C6 H12 O6) es el combustible básico para la obtención de energía, muchos otros compuestos sirven como alimento, pero casi todos son transformados a glucosa mediante una serie de numerosísimas oxidaciones graduales, reguladas enzimáticamente, al cabo de las cuales el oxígeno atmosférico (ingresado por respiración pulmonar) se une a los átomos de hidrógeno de las citadas moléculas para formar H2 O. En cada oxidación se liberan gradualmente pequeñas porciones de energía que son capturadas para formar el ATP. Si las oxidaciones no fueran graduales, la energía se liberaría de manera violenta y se dispersaría como calor.
En el proceso de obtención energía a partir de la glucosa hay tres rutas metabólicas:
1.GLUCÓLISIS: ocurre en el citosol, donde cada molécula de glucosa, con sus 6 átomos de Carbono, da lugar a dos moléculas de piruvato (de 3 átomos de Carbono). Se invierten dos ATP pero se generan cuatro.
2.RESPIRACIÓN CELULAR: ocurre cuando el ambiente es aerobio (contiene O2) y el piruvato se transforma en dióxido de Carbono (CO2) liberando la energía almacenada en los enlaces piruvato y atrapándola en el ATP.
3.FERMENTACIÓN: cuando el O2 está ausente, ambiente anaerobio, se producen otras moléculas como el ácido láctico o el etanol.
REDOX
Cuando los grupos fosfatos se transfieren al ADP para formar ATP, se está almacenando energía. Otra forma de almacenar energía es transferir electrones (e-), las reacciones se denominan de oxidorreducción o reacciones redox.
La ganancia de uno o más electrones e- por un átomo, ión o molécula es llamada reducción.
La pérdida de uno o más electrones e- por un átomo, ión o molécula es llamada oxidación.
Hay que tener en cuanta que una molécula se oxida o se reduce no solamente cuando intercambia electrones, sino también cuando intercambia átomos de Hidrógeno (no iones H), ya que involucra transferencia de electrones:
H = H+ + e- Átomo de hidrógeno= protón + electrón
Por ello una oxidación siempre ocurre simultáneamente con una reducción. Cuando un material se oxida, los e- perdidos se transfieren a otro material, reduciéndolo.
Parte de la energía presente en el agente reductor (cuando dona e-), se asocia con el producto reducido, por lo que las reacciones redox son otra forma de transferencia de energía.


Cofactores Redox
Durante las principales reacciones redox del catabolismo de la glucosa intervienen dos moléculas intermediarias: NAD y FAD. Se denominan cofactores Redox: alternativamente se reducen y luego se oxidan.

1.NAD: nicotinamida adenina dinucleótido.
NAD+ en su forma oxidada y NADH + H cuando está reducido.
La concentración de NAD+ en la célula es pequeña; por lo tanto debe reciclarse continuamente de la forma oxidada a la reducida y viceversa.
NAD+ (oxi) + 2H+ + 2e- NADH (red) + H+
Figura 5. Estructura del NAD

Figura 5. Estructura del NAD

2.FAD: flavina adenina dinucleótido. Transporta 2H, por lo que es FAD en su forma oxidada y FADH2 cuando está reducido.

3.Otros cofactores Redox:
Ubiquinona (Coenzima Q) transporta 2H
Grupo Hemo (en los citocromos) transporta un electrón


Anabolismo y Catabolismo
Su actividad vital se manifiesta a través del metabolismo, las reacciones pueden ser de dos tipos:
Reacciones anabólicas: destinadas a formar moléculas propias, por lo general son reacciones de síntesis de moléculas complejas a partir de moléculas simples. Esta reacción requiere energía.
Figura 6. Reacciones anabólicas

Figura 6. Reacciones anabólicas

Reacciones catabólicas: implican la disgregación y oxidación de las biomoléculas, con su consecuente destrucción, obteniéndose energía en forma de ATP en el proceso. Esta energía es la usada en las reacciones anabólicas.
Figura 7. Reacciones catabólicas


Figura 7. Reacciones catabólicas

La mayor parte de los usos de la energía en las células vivas comprenden pares de reacciones asociadas con enlaces ATP. En la primera reacción la energía liberada por medio de una reacción exergónica produce la síntesis de ATP, en la segunda, la hidrólisis del ATP produce una reacción endergónica que requiere energía.
Cada reacción acoplada es catalizada por una enzima específica que coloca a las moléculas a los canales de energía de ATP de manera adecuada.


Figura 8. ATP como donante de energía


Figura 8. ATP como donante de energía